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ABSTRACT 
 

Analytics software is increasingly used to improve and maintain operational efficiency in 

commercial buildings. Energy managers, owners, and operators are using a diversity of 

commercial offerings often referred to as Energy Information Systems, Fault Detection and 

Diagnostic (FDD) systems, or more broadly Energy Management and Information Systems, to 

cost-effectively enable savings on the order of ten to twenty percent. Most of these systems use 

data from meters and sensors, with rule-based and/or data-driven models to characterize system 

and building behavior. In contrast, physics-based modeling uses first-principles and engineering 

models (e.g., efficiency curves) to characterize system and building behavior. Historically, these 

physics-based approaches have been used in the design phase of the building life cycle or in 

retrofit analyses. Researchers have begun exploring the benefits of integrating physics-based 

models with operational data analytics tools, bridging the gap between design and operations. In 

this paper, we detail the development and operator use of a software tool that uses hybrid data- 

driven and physics-based approaches to cooling plant FDD and optimization. Specifically, we 

describe the system architecture, models, and FDD and optimization algorithms; advantages and 

disadvantages with respect to purely data-driven approaches; and practical implications for 

scaling and replicating these techniques. We conclude with an evaluation of the future potential 

for such tools and future research opportunities. 
 

 
 

Introduction 
 

This paper presents the development of a hybrid data-driven and physics model-based 

operational tool for energy efficiency in central cooling plants. The tool, PlantInsight, offers fault 

detection and diagnostics (FDD) functionality, setpoint optimization, and visualization of key 

performance parameters. Operational tools that combine analysis of historical data with a 

representation of the physics of the building and its systems may offer increased diagnostic 

power. Whereas empirical data-driven analytics permit assessment of operations based on actual 

prior system performance, physics-based approaches also enable assessment relative to design 

intent, and underlying physical principles. While the potential advantages of these hybrid tools 

are clear, it is less clear whether they can practically be developed and deployed for routine use 

in today’s buildings. In this work, we detail the development of PlantInsight, including its 

architecture, model creation and calibration, and analysis algorithms. We describe development 

challenges that were encountered, as well as operator reception of the tool, and savings 



opportunities identified. Based on this experience we provide discussion of practical implications 

for scaling and replicating these techniques, and conclude with an evaluation of the future 

potential for such tools and future research opportunities. 
 
Current State of the Art 

 
Data-driven and rule-based analytics tools, as defined in Katipamula 2005, are 

increasingly used for operational efficiency in today’s commercial buildings. Energy 

Management and Information Systems (EMIS) span a family of technologies and including 

energy information systems (EIS), building automation systems, fault detection and diagnostics, 

and monthly energy analysis tools. These tools have enabled whole-building energy savings of 

up to 10-20% with rapid paybacks, often under three years (Granderson 2011, 2016). Savings are 

achieved through multiple strategies such as identification of operational efficiency improvement 

opportunities, fault and energy anomaly detection, and inducement of behavioral change among 

occupants and operations personnel. The market for commercial analytics tools has expanded 

quickly over recent years, marking one of the largest market growth areas in commercial 

building technologies. 
In contrast to data-driven approaches, physics-based modeling tools use first-principles 

and engineering models (e.g., efficiency curves) to characterize system and building behavior. 

Historically, these physics-based approaches have been used in the design phase of the building 

life cycle or in retrofit analyses; EnergyPlus, eQuest, Sefaira, and Integrated Environmental 

Solutions (IES) VE, are just a few tools that are founded on these physics-based methods. There 

are also instances of simulation models used for HVAC design, such as Trane Trace. In the 

commercial market, there are a modest yet growing number of tools that have begun to 

incorporate physics-based models into applications that target the identification of operational 

efficiency opportunities, such as simuwatt Energy Auditor and Retroficiency Building 

Efficiency Intelligence. Those that do are often used to identify capital and operational measures, 

but are most commonly applied at single points in time for activities such as audits, 

commissioning, and portfolio opportunity assessment, as opposed to being integrated into 

continuous tools for operations staff. These examples notwithstanding, the use of hybrid data- 

driven and model-based approaches for operational tools that conduct continuous fault detection 

and energy use optimization is largely still the domain of exploratory research. For example, a 

previous attempt to use EnergyPlus physics-based models to identify whole-building level 

operational energy waste was proposed by (Pang 2012). 
 
Overview of PlantInsight: A Physics-based Operational Analytics Tool 

 
PlantInsight is a hybrid data-driven and physics model-based operational tool for energy 

efficiency in central cooling plants. It provides detection and diagnosis of three types of faults – 

fan cycling, chiller cycling, and poor chiller efficiency. It also provides analysis of optimal 

condenser water setpoint temperatures to minimize plant energy consumption. A calibrated 

Modelica model is used in the algorithms to identify poor chiller efficiency, and optimal 

condenser water temperature, while the cycling faults are identified using purely data-driven 

models. In addition, the tool offers visualization for operators to track key parameters such as 

cooling plant load and chilled water loop temperature. Through provision of these features, 

PlantInsight targets ten percent plant energy savings, given engaged users who use the tool daily, 

and are able to take action on the tool’s outputs. 



Development Methodology 
 

The development of the PlantInsight tool comprised four primary elements: model 

construction and calibration, creation of FDD and optimization algorithms, architecture 

definition, and operator feedback. These elements are detailed in the following subsections. 
 
Model Construction and Calibration 

 
The Modelica models that simulate the operation of the central cooling plant were 

developed using a diversity of information from the cooling plant design specifications, 

nameplate data, drawings, and trend-log data. Beginning with the design drawings, the plant 

configuration, components, and equipment were replicated in model form. The Modelica 

Buildings Library (Wetter 2014) was used to build a representation of a specific central cooling 

system a large university campus. In this case, the system included 2 interconnected chilled 

water plants. The first plant contains one 2500-ton York MaxE
TM 

YD Centrifugal Liquid Chiller 

and two 1250-ton York MaxE
TM 

YK Centrifugal Liquid Chillers, with four cooling towers and 

five primary pumps. The second plant contains three 2500-ton York MaxE
TM 

YD Centrifugal 

Liquid Chillers (with space available for an additional 2500 ton chiller), three cooling towers, 

and four pumps. Typical off-peak operations use the first plant exclusively, while peak summer 

operations use the second plant either exclusively, or in combination with the first.  Once the 

plant design was represented, manufacturer data including nameplate values, chiller loading 

curves, and pump curves, were used to quantify key equipment and component-level 

characteristics. Finally, the specific control sequences that are in use at the plant were embedded 

into the model. In-person site visits were necessary to compile all of the information needed for 

model creation, since not all information was readily accessible in digital form. 

Once constructed, the models were calibrated to the measured historic data from the 
cooling plant. The first step in calibration was to filter the historic data to that representing 

steady state plant operation. From the steady state data, we ensured as large as possible a range 

in the variation of each variable, for maximum coverage of operational conditions. Next, the 

GenOpt (Wetter 2001) optimization engine was used to search the (un-calibrated) model 

parameters to minimize the difference between the model outputs and the associated measured 

data. The variables involved in the calibration are listed in Table 1. Model parameters are values 

used in the model that are known a priori, and are specific to the equipment and plant design. 
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Table 1 Variables used in the model calibration 
 

Plant Components Model Outputs Model Inputs Model Parameters 

Chiller model Coefficient of 
Performance (COP) 

Compressor status (on/off) 
Chilled water flow rate 

 
Condenser water flow rate 

 
Chilled water entering 

temperature 

 
Temperature of the 

condenser water entering 

the chiller 

Coefficients of the 
chiller operation curve 

 
Nominal evaporator 

temperature 

 
Nominal condenser 

temperature 

Cooling tower 
model 

Condenser water 
leaving temperature 

 
Fan energy use 

Fan speed ratio of each 
module 

 
Condenser water entering 

temperature 

 
Outside air dry bulb 

temperature 

 
Outside air relative 

humidity 

Nominal approach 
temperature 

 
Nominal wet bulb 

temperature 

 
Coefficient of the fan 

operation curve 

 

The ‘goodness’ of calibration for the chiller models was determined based on coefficient 

of performance (COP), and that of the tower models was based on the temperature of condenser 

water leaving the tower and fan power consumption. The objective functions are shown in the 

equations below. Calibration was deemed sufficient when more than 95% of the data points fell 

within a 10% error band. 
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In these equations, 𝐶������(�) and 𝐶������ (�)are the measured and simulated COP during the

 calibration period [�0, �0 + ∆�), ��_�𝑎�
��𝑎 

(�); ��_�𝑎�
����

(�)  are the measured and 

simulated
 cooling tower fan power consumption during [�0, �0 + ∆�); and �_��������(�) and 

�_�������� (�) are
 

the measured and simulated temperature of condenser water leaving the tower. 



FDD and Optimization Algorithms 
 

To-date PlantInsight addresses three faults. Poor chiller efficiency is determined by 

comparing the model-predicted versus the metered coefficient of performance. Described in 

detail in Bonvini 2014a, 2014b, and briefly summarized here, the FDD algorithm is based on an 

advanced Bayesian nonlinear state estimation technique called Unscented Kalman Filtering 

(Julier 1996) that quickly reconciles model predictions with measured data. A back smoothing 

method is added to reduce the likelihood of false positives from operational variability and data 

uncertainties. A clustering and decision tree analysis procedure was developed to group detected 

faults based on the similarity of conditions under which they occur; similar instances are 

grouped, and summarized in the tool interface to support root cause diagnostics by the operator. 

First, a k-means clustering algorithm divides the observed faults into distinct operational 

conditions under which the faults can be characterized. Each k cluster corresponds to a 

diagnostic message for the operator (see Figure 4). Once the clusters are identified, a human 

readable diagnostic message must be assigned. A decision tree is used to determine the 

boundaries in the feature space that distinguish between regular and faulty data, and thus identify 

them. The variables used in the decision tree, i.e. the feature space, are condenser and evaporator 

water temperatures, cooling load, electric power, time of the day, outside air temperature and the 

condenser and evaporator mass flow rates. The results of the decision tree are then sorted in 

order of importance to find the set that best describes the majority of the faulty conditions. This 

algorithm will be evaluated in field testing to assess the effectiveness of the clustering and 

decision tree analysis, as well as the thresholds used in the probabilistic identification of faults. 

Excessive chiller cycling and excessive cooling tower fan cycling are detected using data- 

driven algorithms that rely upon chiller motor current data and fan speed data. The data is 

collected every 5 minutes and interpolated to 10 seconds, using cubic interpolation (linear and 

quadratic interpolation created spurious high frequencies, and large oscillations respectively). 

Interpolation was needed to increase the number of data points in order to use Fourier 

transformation. The time series data is transformed into the frequency domain using a Fourier 

transform on a rolling two-hour window. The area under the amplitude versus frequency curve of 

the Fourier transform is calculated using trapezoid integration, for the area between a frequency 

of 4 cycles per hour to a frequency of 6 cycles per hour. Due to the data sampling frequency of 

every 5 minutes, the shortest cycling frequency (the Nyquist frequency) that can be detected is 6 

cycles per hour. Higher frequency of data collection is desirable to avoid aliasing problems but 

was unfortunately not available. If the area under the curve is higher than a reference value, then 

an excessive cycling fault is identified. 

The optimization algorithm determines the most effective condenser water temperature 

setpoint.The chillers’ efficiency increases when the temperature of condenser water entering the 

chillers (Tcw,ent) decreases. On the other hand, reducing Tcw,ent   may increase the energy 

consumption of cooling towers. Therefore, there is an optimum condenser water temperature 

setpoint for cooling towers that the total energy consumption of the chillers and the cooling 

towers is minimized. To determine the optimal condenser water temperature setpoint, the 

component models of multiple chillers, cooling towers and pumps were packaged into a system 

model. The system model was run to predict the energy consumption under different condenser 

water set points. Optimization constraints, such as the desired cooling load, were also 

incorporated into the model. As with the calibration activity, GenOpt was used as the 

optimization engine. The optimization period can be set to any desired value, in the case of this 

work, ranging from one hour to one day. Specifically, the optimal condenser water set point is 
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determined by solving the optimization problem defined in the equation below, and documented 

in Huang, 2014. 
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In these equations, ��|�0 

+Δ�
 

0 

is the total energy consumption of the chillers and cooling towers 

during the optimization period [�0, �0 + ∆�), ����,���� is the condenser water set point, �̇ 𝑃 is the 
predicted cooling load, �𝑤� is the predicted wet bulb temperature from a weather forecast, �⃗ is the 
state vector of the system (e.g. equipment operating status, water temperature in chiller condenser 
and evaporator), and ����,����,𝐿  and ����,����,𝐻   are the low and high limits of the condenser water set point during [�0, �0 + ∆�). 

 

Architecture 
 

The architecture of the PlantInsight Tool is shown in Figure 1 as a block diagram 

schematic. The green blocks indicate portions of the system that are located at the site, while the 

orange blocks represent remote components. Data from the meters and sensors at each cooling 

plant is transferred to the on-premise automation system (EMCS), which is accessed through an 

operator kiosk. Data from the site is pushed to a remote set of databases (Cassandra storing the 

long term persistent data and Redis for faster access to the most recent data as well as a cache for 

results) that are used to store data for access by the PlantInsight tool. The models, FDD and 

optimization algorithms, and code to generate output and represent findings to the user are 

hosted in a platform on the cloud. The user access to the tool through a browser-based Javascript 

graphical front-end application that interacts with the back-end via a REST API. 
 

 

 
Figure 1. Architecture of the PlantInsight tool for hybrid model-based and data-driven central plant 

diagnostics and optimization 



Operator Feedback and Tool Reception 
 

To ensure that the tool would be of maximum utility to plant operators, design feedback 

was obtained iteratively, throughout development. The most important feedback that was (and is 

being) integrated into the tool design and functionality is summarized in the following: 

 
 Add key performance indicators: Primary chilled water loop temperature, and weather 

forecast are critical parameters that are tracked by the operations staff. In addition, staff 

also requested that the tool-predicted plant load forecast be added to the interface. Since 

these variable are tracked on a continual basis under existing operations, it was important 

that they be included in the PlantInsight tool. If excluded the tool would be less likely to 

be integrated into daily management processes because it would lack the most valuable 

monitoring features are included in the current EMCS. 

 Convert energy units to dollars: while campus energy managers regularly track kWh and 

Btus, tons and dollars resonate more strongly with plant operations staff. Therefore, the 

impact of faults and optimal setpoints are represented in terms of utility costs. Operators 

and energy management staff were interested in two cost scenarios – savings gained from 

changes that are implemented (to communicate the value of the team’s contributions to 

others in the organization), and the cost of not addressing changes (to facilitate approval 

of remedial actions and associated expenditures). 

 Limit the frequency of optimization: Although the tool was initially configured to 

generate optimal setpoints each hour, the operations staff were not comfortable 

implementing changes more than once a day. More frequent changes were deemed 

impractical, and risky. Over time, twice-daily changes may be integrated into operational 

routines to address overnight conditions. 

 
Both the alpha and beta versions of the tool were well received by the plant operations 

staff. The site has plans to develop standard operating procedures to formalize action taking 

based on findings from use of the tool. This is an important aspect of maximizing value - if there 

is no process to authorize changes required to modify setpoints and to eliminate faults, energy 

saving benefits cannot be achieved. 

Screen shots of the beta version of PlantInsight are provided in Figures 2-4. Figure 2 

shows the landing page of the tool. Since the text size in the images is small the contents are 

described in detail in the following. The period of time for which data is shown, and faults are 

summarized is user-selected and shown in the upper right hand date summary. In the plot, the 

total load on both plants (tons) is overlaid with the load from each plant individually. Above the 

plot, the total cost of operations, total consumption, maximum load, and number of current faults 

are summarized in KPI tiles. 

Figure 3 shows the condenser water temperature setpoint optimization features in the 

tool. In the upper plot, the total load on the plant (tons) is overlaid with the actual measured 

power, and that power that would be consumed under the model-determined optimal condenser 

water temperature setpoint. In the lower plot, the actual setpoint (degrees F) is plotted; as 

reflected in the horizontal trend, this is an annual constant under current operational strategies. 

The model-determined hourly optimal setpoint is also shown, along with the wet bulb 

temperature. The model-determined optimal generally follows the trend of the wet bulb 

temperature, suggesting that an automated solution could be implemented to remove the need for 

operators to manual adjust this control parameter. 



 
 

Figure 2. Screen shot of the landing page of the PlantInsight tool. 

 

 
 

Figure 3. Screen shot of the condenser water temperature setpoint optimization features in the PlantInsight 

tool. 



Figure 4 shows the fault detection and diagnostic features in the tool. In the upper plot, 

the chiller efficiency curve is plotted with kW/ton on the y-axis, and cooling tons on the x-axis. 

In the bottom plot, a time series of detected efficiency faults is provided. A time series of the 

measured coefficient of performance (COP) is overlaid with the model-predicted COP; when the 

two values diverge beyond a threshold size and probability, a fault is detected. Diagnostic fault 

aggregation to group faults instances based similarity of conditions is summarized in the lower 

right hand portion of the plot. Please refer to the section FDD and Optimization Algorithms for 

further description on how faults are detected and grouped for diagnosis. 

 

 
 

Figure 4. Screen shot of the fault detection and diagnostic features in the PlantInsight tool. 

 

Evaluation of Model-based Analytics Approach 
 

To evaluate the research question of whether physics-based models can be practically 

brought into operational tools, we consider scalability, required expertise, and maintainability 

and contrast with approaches based purely on rule-based and data-driven techniques. Admittedly, 

these approaches are diverse and quite varied, as are physics-based models, and the use cases for 

which they may be deployed. Therefore, we present a general discussion, based on the current 

state of today’s most readily available solutions. From the experiences and prior work that 

ground this discussion, we develop conclusions for future work. 

Given the modeling tools available today, physics-based model construction is more labor 

intensive and less scalable than rule-based and data-driven models. While non physics- based 

approaches typically require tuning of key parameters, they are less likely to require 

customization or rebuilding for each new building or system encountered. Moreover, if 

components change, retrofits are made, or control sequences are modified, physical models may 

require modification. It is possible to leverage whole-building reference models that provide a 

more coarse representation of the building and its systems, however it is not clear that these offer 

sufficient resolution for reliable fault diagnostics and optimization. Depending on the specific 

modeling environment used, ‘stock’ components may be available from pre-existing libraries. 



However the models must then be adapted for use with specific diagnostic algorithms. For 

example, in this work, the chiller model from the Modelica Buildings Library was adapted and 

modified for use in the state/parameter estimation phase of the fault detection algorithm. 

Model calibration requires a significant degree of specialized expertise in building 

modeling, operations, and building science. In general however, it can largely be conducted with 

data that is commonly available from building control systems. As in the case of rule-based and 

data-driven models, the required data often needs to be cleansed to fill gaps and filter extreme or 

erroneous values. Cost effective integration of control system data into analytics tools remains 

one of the most significant challenges to advancing the state of today’s technology, whether 

model-based or data-driven approaches are employed. In principle it is possible, but in practice 

the associated cost and complexity often outweigh the benefits of the advanced analytics that 

require the data integration. Once the data is obtained, care must be taken to ensure that the 

models are being calibrated in a physically meaningful way. Auto-calibration routines that codify 

some of the expertise that is needed for successful calibration are being developed by 

researchers, and are beginning to be offered to the industry (Sanyal 2014; Sun 2016). However, 

calibration approaches must be matched to the application. For example, calibration of a model 

used for a chiller fault detection as it operates through dynamic and steady state regimes may be 

quite different from that of a whole-building model that is used to determine faults in centralized 

HVAC systems. Finally, the questions of when to recalibrate and how to account for faults 

present in the calibration data are the subjects of ongoing research. 

As described in the Introduction, in theory, model-based approaches offer the potential 
for enhanced diagnostic power. PlantInsight permits detection of periods of low chiller efficiency 

that may be difficult to detect purely with data-driven approaches that are limited only to historic 

data. In general however, more research is needed to validate whether model-based fault 

detection, in practice, is more or equally effective than data-driven techniques. Finally, one can 

consider the infrastructural aspects of practically delivering model-based approaches for use in 

continuous operational analytics. The infrastructural requirements for such systems do not 

present a practical challenge for scaled delivery. Cloud-based software services dominate today’s 

solutions for operational analytics tools, precisely because of the cost-efficient, scalable, 

computational and hosting flexibility that they provide. 
 

 
 

Conclusions, Future Work 
 

This paper presented the development of a physical model-based FDD and optimization 

tool for a cooling plant. One conclusion on this work is that this approach is still cumbersome 

given all of the steps to build and calibrate the model for ongoing operational use. With further 

research to automatically calibrate and construct models, these types of tools could be made 

more ready for production use. These physics-based techniques remain a compelling direction 

for the continuous commissioning, optimization and FDD systems of the future.  One major 

advantage of a physics based models over data-driven models is the ability to extend them for 

retrofit analysis as well as those that focus on operational efficiency analysis. One can drop in 

new chillers, towers, or pumps and use the model for further analysis beyond the realm of prior 

historic operations. In addition, how the system should operate can be compared to how it has 

operated in the past. 

Scaled delivery of these approaches will require a change in industry capacity and 

expertise, as well as continued research and development to lower the bar of expertise that is 



required. Today’s building energy analytics providers tend to have in-house data scientists, rather 

than the building scientists who are currently needed to work with these complex models. We 

also need to demonstrate the costs and benefits of these tools, and their advantages, to build 

market demand. Ideally, physics-based models will be used throughout the building life cycle – 

from design, to initial commissioning, to ongoing operations, valuation of proper maintenance, 

and retrofit exploration. Even if these approaches are costly and complex if used solely for 

identifying and diagnosing waste and efficiency opportunities, there is certainly a role for model- 

based approaches in holistic strategies for advanced, efficient building operation. The building 

energy analysis community is only beginning to have tools to deliver energy-aware transactive 

controls and dynamic, anytime optimization – capabilities that will surely be needed in the 

buildings and energy supply systems of the future. 

Future research will explore auto-calibration techniques for diverse types and 

applications of system and whole-building-level physical models. Solutions to automate and 

simplify the creation of physics-based models based on existing specifications, drawings, and 

building information models (BIM) are also needed for practical scalability. If the BIM vision 

were successful, and coupled with information on sequences of operations, one could generate 

digital specifications in a format that was interoperable with energy analysis tools. The next 

stage for greater tool interoperability would be the capability to automatically import trend log 

data to a model calibration routine. The development of standard, open FDD algorithms could 

ensure that algorithms, models, and calibration routines can be seamlessly integrated. Finally, 

there is a need for auto-correction and auto-tuning of controls based on the outputs of FDD 

algorithms. Most of today’s systems either optimize controls or perform FDD, but it is rare to 

close the loop by connecting the two. While not yet practical for deployment in today’s 

buildings, these model-based systems are important for the eventual delivery of truly optimal 

building performance. 
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